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Motivating Applications: Radiation Biology %

Problem: Quantify effects of radiation on cells by
analyzing presence of proteins known to play crucial
roles in DNA repailr.

Data: Proteins in cell cultures are tagged with
fluorescent probes, stained, irradiated, imaged.
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Biological Challenge: ey £
High Throughput Microscopy Analysis
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Sources of Image Variation

Radiation dose/quality: high vs. low, Xray photons
(sparse) vs. heavy charged particles (dense)

Microscopy: fluorescence, confocal, deconvolution
Time course

Cell type and stage of mitotic cycle

Direct vs. indirect effects of radiation

Sample preparation
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Sources of Image Variation

Radiation dose/quality: high vs. low, Xray photons
(sparse) vs. heavy charged particles (dense)

Microscopy: fluorescence, confocal, deconvolution
Time course

Cell type and stage of mitotic cycle

Direct vs. indirect effects of radiation

Sample preparation

early foci late foci (Petrini & Stracker, 2003)
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Mathematical Challenge

 Current microscopy analysis: easy to design ad hoc,
heuristic methods to get quick scientific results.

« Disadvantage: special purpose tools are designed for
each new biological research question.
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Mathematical Challenge

Current microscopy analysis: easy to design ad hoc,
heuristic methods to get quick scientific results.

Disadvantage: special purpose tools are designed for
each new biological research question.

Mathematical models: can yield general solutions to a
greater range of scientific questions and data.

Future microscopy analysis: must move away from
patchwork of image processing tools and toward
principled statistical modeling and analysis.

March 5, 2005




QOutline

. Microscopy Analysis: Biological and
Mathematical Challenges

. Current Approach: Microscopy Image
Analysis Application

. Statistical Approach: Background

. Statistical Approach: Preliminary Results

. Current Directions
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Foci Analysis Application

Pros

» Achieves high-accuracy foci detection for variety of large
Image sets

» Automatic collection of foci statistics (size, intensity,
contrast, quantity per nucleus)

» Currently in use by radiation biologists (Costes, et. al.,
Bioastronautics Investigators’ Workshop, 2005)
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Foci Analysis Application

Pros

» Achieves high-accuracy foci detection for variety of large
Image sets

« Automatic collection of foci statistics (size, intensity, . r.
contrast, quantity per nucleus) __ ?a S

» Currently in use by radiation biologists (Costes, et. al.,
Bioastronautics Investigators’ Workshop, 2005)

Cons
« Parameters adjusted by user can bias results
* Designed for a specific type of feature
» Toolbox approach not easily extendable to other tasks

March 5, 2005




Feature Detection via Filter Banks
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Gabor
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transform
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QOutline

. Microscopy Analysis: Biological and
Mathematical Challenges

. Current Approach: Microscopy Image
Analysis Application

. Statistical Approach: Background

. Statistical Approach: Preliminary Results

. Current Directions
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How to Learn Basis From Data"

Independent Components Analysis (Comon, 1991)

e Use statistical criteria to define optimal basis for
decomposing images into combinations of basis functions

e Optimization yields multi-oriented, multiscale, bandpass
basis functions specifically tuned to data set
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How to Learn Basis From Data? ey

BERKELEY LAaB

Independent Components Analysis (Comon, 1991)

« Use statistical criteria to define optimal basis for
decomposing images into combinations of basis functions

o Optimization yields multi-oriented, multiscale, bandpass
basis functions specifically tuned to data set

™ o
example g i L 1 P N O K 0 S
basis =3 - - v
s NENAN NS
Sparse Coding (Olshausen-Field, 1996)
Independents Components Analysis (Bell & Sejnowski, 1997)

 More localized than Fourier filters , arbitrary frequencies
and orientations, unlike Gabor and wavelet filters

March 5, 2005




-~

Independent Components Analysis

e Consider an arbitrary NxN subimage of a sample
Image for fixed N: R |
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Independent Components Analysis

e Consider an arbitrary NxN subimage of a sample
Image for fixed N: -

 Treat each subimage as an observed vector variable
X that is a mixture of unknown basis functions a, with

unknown coefficients S
X =§a,+S,a, +---+§ a_

B-s®M. .=+ +s5, @
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Independent Components Analysis

Consider an arbitrary NxN subimage of a sample
Image for fixed N: -

Treat each subimage as an observed vector variable
X that is a mixture of unknown basis functions a, with
unknown coefficients S

X =S,a, +S,a,+--+5S,a,
LI _ "
=™, B ++s. K

Unknowns: basis functions a; and coefficients S
Given: only observations x

X = AS
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Optimization ceeen
P

X = AS

e EXxpress unknown coefficients in terms of inverse W
of unknown mixing matrix A

s* = Wx

« Coefficient estimates §* are called independent
components
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Optimization ceeen
P

X = AS

e EXxpress unknown coefficients in terms of inverse W
of unknown mixing matrix A

s* = Wx

Coefficient estimates $* are called independent
components

Optimize a function J(s*) that encourages the
iIndependent components to be as non-Gaussian as
possible
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Non-Gaussianity: What and Why?

sample subimage

“ N
X = (X, Xpy... %)
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Non-Gaussianity: What and Why?

basis function direction sample subimage

i .~
a

X = (X, Xpy... %)
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Non-Gaussianity: What and Why?

* Projection pursuit: random subspace projections of
structured point clouds are typically Gaussian
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Non-Gaussianity: What and Why? ,’N

BERKELEY LAaB

Projection pursuit: random subspace projections of
structured point clouds are typically Gaussian

Interesting projections are not Gaussian, e.g., mixture
of Gaussians for cluster discrimination
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Non-Gaussianity: What and Why?

o Salient features
may lie along
non-Gaussian
dimensions
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Non-Gaussianity: What and Why? ,’N

_ ERKELEY LAB

Salient features * Interesting directions
may lie along are not Gaussian, but
non-Gaussian peaky, heavy-tailed,
dimensions super-Gaussian
distributions, e.qg.
Laplacian
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Recall: Optimization Constraints

X = AS

« Optimize a function J(s*) that encourages the

iIndependent components to be as non-Gaussian as
possible

* Output: basis functions and independent components

K= ™. s B + - +s K}
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Non-Gaussianity: Contrast Functions ,

Entropy: measure of how

random vs. structured a I _j f(y)log f (y)dy

random variable is

Negentropy: difference in
entropy w.r.t. Gaussian with J(y) = H(Y jauss) —H (¥)

same variance

March 5, 2005




Non-Gaussianity: Contrast Functions ey \

Entropy: measure of how

random vs. structured a I _j f(y)log f (y)dy

random variable is

Negentropy: difference in
entropy w.r.t. Gaussian with J(y) = H(Y jauss) —H (¥)
same variance

Negentropy Approximation:
C constant J(y) =
v standard Gaussian variable c[E{G(y)}- E{G (v)}]2

G non-quadratic function

FastiCA: A. Hyvarinen. Fast and Robust Fixed-Point Algorithms for Independent

Component Analysis. IEEE Transactions on Neural Networks 1999.
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QOutline

. Microscopy Analysis: Biological and
Mathematical Challenges

. Current Approach: Microscopy Image
Analysis Application

. Statistical Approach: Background

. Statistical Approach: Preliminary Results

. Current Directions
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Independent Components f\l \
of Microscopy Imagery

Goals

Represent salient features characterizing cell
differences, e.g. foci

Distinguish differently treated cells and images

Design task-specific algorithms: feature extraction,
cell and image classification
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Preliminary Test ceeen
Yy —

Control Group Dose: 30cGy, Time: 10min

* Input data: 15x15 pixel subimages within nuclei
» Centered at local maxima

« Small training set (~1000 subimages each)
March 5, 2005




Example Microscopy Basis Functions ,’N

Basis Functions Basis Functions
Control Group s B Dose: 30cGy, Time: 10min

L
T

ca c10
|

» Subimages centered and whitened (decorrelated, unit variance)
« Data dimensionality may be reduced by PCA

» Basis functions defined up to unknown sign ambiguity
March 5, 2005
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Large Data Set

~100 1.3 Mb images

9 classes (varying dose/time
treatment groups)

~10 images per class

2 training, 8 testing

~10,000 15x15 subimages
random sample of ~2000
training examples
dimensionality reduction by PCA
from 225 to 20

March 5, 2005




— A
Large Data Set

Basis Functions

~100 1.3 Mb images

9 classes (varying dose/time
treatment groups)

~10 images per class

2 training, 8 testing

~10,000 15x15 subimages
random sample of ~2000
training examples
dimensionality reduction by PCA
from 225 to 20
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Independent Component Distributions
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Classification by Maximum Response  seceerp
d P

Sample Subimages: FG Class Sample Subimages: BG Class
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Classification by Maximum Response  seceerp
Y P
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Validation coorens]
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Nuclei with Salient Features (varying IR, 60 minutes)
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Conclusions and Current Directions

Promising statistical method for learning
representation of salient features.

Away from hand-designed, problem-specific tools,
toward general purpose solutions.

Next
Applications to broad variety of imagery
Feature extraction algorithms
» subimage classification for feature detection
= multiscale analysis
= validation of accuracy/precision

Cell and image classification: Bayesian modeling of
treatment groups
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Future Work: Bystander Effect
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Thank You
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Current Directions: Engineering

Usability: trade-off between flexibility and simplicity.
e.g. trainable vs. interactive vs. fully automatic

Cross-platform implementation integrating analysis,
visualization, browsing

VTK/ITK open source commercial-grade libraries
developed in medical imaging community

Capabillity for distributed and parallel computing for
large data sets
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Feature Detection via Filter Banks

. Gaussian standard deviation in x-direction
. Gaussian standard deviation in y-direction
. sinusoid wavelength

. filter orientation
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Image Processing Approach cocceer]
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e Geometric segmentation provides local context

detection via intensity statistics and locally adaptive
thresholds

» User preferences for adapting software to data set
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Scientific Results:
Size and Number of Foci

100cGy/60min

-
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Area (pixels)
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Feature Detection via Filter Banks

Gabor Wavelet Function
sinusoid modulated by Gaussian envelope
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FastICA Implementation

A. Hyvarinen. Fast and Robust Fixed-Point Algorithms for Independent
Component Analysis. IEEE Transactions on Neural Networks 10(3):626-
634, 1999.

e Maximizes approximation to negentropy: easy to
compute, compromise between negentropy and
kurtosis

» Data pre-whitened and reduced with classical PCA
 Fixed-point optimization, block-mode computation
e Parallel and distributed

» Cubic convergence rate

e C IS a constant, v is a zero-mean, unit-variance
Gaussian variable, G is a non-quadratic function

J(y) = c[E{G(y)}- E{G(V)}I’
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Features with High Response
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Bystander Experiment
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Bystander Experiment
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Response Histograms
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Classification by Maximum Response ’N
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Validation

Nuclei with Salient Features
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Learned Basis vs. Filter Bank reecen) -’-},

_ ERKELEY LAB

How do learned basis functions compare to typical filter

bank kernels?

Learned Basis Functions 2D Laplacian of Gaussian
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